lunes, 22 de noviembre de 2010

Geoquimica

Geoquímica.

Ciencia que estudia la composición química de la Tierra; su distribución y abundancia de elementos químicos (incluyendo a los isótopos) en minerales, rocas, suelos, agua y atmósfera; así como las causas de la distribución y la circulación de estos elementos en la naturaleza en base a las propiedades de sus átomos e iones.
Esta ciencia se encuentra ligada con las ciencias de la Tierra, y en especial, con la cristalografía, mineralogía, petrología, hidrología y climatología; pero la continua evolución que experimenta la exploración planetaria ha supuesto que la geoquímica amplíe sus campos de estudio. Los problemas que principalmente analiza la geoquímica son el origen y la abundancia de los elementos químicos en el universo, nuestra galaxia, sistema solar y sus planetas; su distribución en atmósfera, hidrosfera, corteza, manto y núcleo terrestre; los elementos y grupos iónicos presentes en las estructuras cristalinas de las distintas fases minerales; las reacciones químicas que caracterizan los distintos procesos metamórficos y producen la desaparición de ciertas especies minerales en favor de otras nuevas; el transporte de elementos químicos en disolución por acción de aguas meteóricas, subterráneas, fluviales, lacustres o marinas; los cambios químicos que se producen durante los procesos de compactación y cementación de depósitos sedimentarios; las reacciones existentes en las etapas de evolución magmática hasta la consolidación de las masas plutónicas, así como las presentes en procesos de efusión volcánica; y los mecanismos de acumulación de las distintas menas minerales, ya sean de origen ígneo, metamórfico, o sedimentario.

HistoriaLa consideración de la geoquímica como ciencia es muy reciente, no es hasta principios del siglo XX cuando los petrólogos de origen escandinavo V. M. Goldschmidt y P. E. Eskola, llevan a cabo los estudios pioneros en este campo y establecen los principios que rigen los cambios presentes en las reacciones metamórficas. Max Von Laue, en 1912), permite a Goldschmidt (químico y petrólogo escandinavo) definir en 1921 la primera clasificación geoquímica de los elementos químicos, con el establecimiento de la estructura cristalina de más de 275 compuestos y elementos, y el desarrollo de las primeras tablas de sus radios iónicos. En 1929 en base a estos resultados, postula una ley (Ley de Woldschmidt), mediante la cual se consigue relacionar la composición química con la estructura cristalina, que queda definida por los iones, los tamaños que estos presentan y el carácter del enlace que los une. Ciclo biogeoquímico.Datación geológica.Isótopo.
Eskola geólogo finlandés (1883-1964) estudia el equilibrio de las fases minerales presentes en las rocas metamórficas del escudo escandinavo, así como las facies que presentan. En sus estudios, vislumbra la relación existente entre la composición química y mineralogía de las rocas, de manera que una vez alcanzado el equilibrio de las mismas, su posible composición mineral sólo esta controlada por la composición química. En la actualidad se sabe que la existencia de una fase mineral depende de otras muchas variables como por ejemplo la presión y la temperatura.
La aparición de nuevas técnicas de estudio como la difracción de los rayos X (definida por
Goldschmidt demuestra que la corteza terrestre está constituida principalmente por oxidaciones (arpoximadamente el 90% de su volumen), de ciertos elementos químicos en los que dominan el silicio. En la publicación de su obra Leyes geoquímicas de la distribución de los elementos, se fijan las leyes básicas de la química cristalina, razón por la cual se le considera como el precursor de la geoquímica.
La evolución posterior de la geoquímica se centra principalmente en el análisis y comprensión de la problemática medioambiental.
RamasLa geoquímica presenta numerosas aplicaciones en diferentes ramas de la geología, así como con otras ciencias. Éste es el caso de la astronomía, en la cual la geoquímica proporciona una inestimable ayuda en la determinación de la abundancia relativa de los diferentes elementos que existen en la Tierra, la Luna y el resto de los planetas del sistema solar; así como la determinación de la edad radiométrica de meteoritos y rocas presentes en la corteza terrestre, mediante la estimación de sus concentraciones relativas en determinados elementos radiactivos.
Geoquímica orgánicaCon el término de geoquímica orgánica o biogeoquímica, se definen todos los aspectos geoquímicos referidos a las condiciones en las que se originó la vida, como es la evolución de la atmósfera e hidrosfera a partir de la aparición de los organismos aerobios; y los presentes en la incorporación de los organismos durante la génesis de ciertos depósitos sedimentarios. Hay que tener en cuenta que los organismos vivos concentran determinados compuestos químicos, como por ejemplo los carbonatos que constituyen las conchas de moluscos y partes esqueléticas de organismos superiores; o los azúcares y proteínas que acumulan las plantas; cuya concentración lleva como consecuencia la formación de un tipo de depósito denominado biogénico. Algunos de ellos presentan un gran interés económico, y la geoquímica estudia todos los aspectos relacionados con su formación, enriquecimiento y explotación; tal es el caso de los depósitos de fosforita, caliza, dolomía, carbón y petróleo.


Véase:
Geoquímica ambientalRama de la geoquímica ocupada de los eventos ligados al entorno del ser humano, que afectan directamente a la salud pública. Existen elementos y compuestos químicos (como el plomo o el nitrato) de cuya concentración, aún en pequeñas cantidades, presentan una gran toxicidad o resultan enormemente cancerígenos para el organismo; los oligoelementos (flúor, cobalto, níquel, etc.), por el contrario, son esenciales para el organismo en pequeñas cantidades, mientras que el aumento en su concentración los convierte en tóxicos. El estudio de su concentración en el agua se hace imprescindible para establecer el grado de contaminación o la potabilidad.
El sustrato rocoso imprime gran parte de las características químicas de un suelo, sus elementos, la vegetación que va a desarrollar y los iones en disolución de las aguas subterráneas existentes. El análisis de estos datos es una ayuda inestimable para el control de las zonas de peligro donde existan elementos, o minerales potencialmente tóxicos, o cancerígenos. Por ejemplo, el selenio es dañino para el desarrollo de la vida animal en zonas de excesivo regadío; la concentración de gas radón en zonas de escasa ventilación, incide en el cáncer de pulmón; y el consumo prolongado de aguas con nitratos en disolución, resulta cancerígena.
Geoquímica isotópicaEsta rama tiene un importantísimo papel en geología. El enriquecimiento y empobrecimiento en ciertos isótopos radiactivos de determinadas sustancias, y el conocimiento de las concentraciones relativas de sus masas; permite el conocimiento exacto de la antigüedad correspondiente a las rocas que los contienen, y en ocasiones, emplearlos como geotermómetros.
Por ejemplo, la medida de la proporción entre los isótopos de oxígeno-16 y oxígeno-18 presente en el carbonato cálcico que segregan ciertos animales marinos en las partes esqueléticas, está influido por la temperatura del agua en la que se desarrollaron. Éste es el caso de las conchas calcáreas de organismos fósiles cuyo análisis isotópico permite estimar la temperatura a la que se encontraron los mares en aquella época. Mediante este método, se ha podido deducir las variaciones que presentaron los océanos durante y entre las distintas glaciaciones, mediante el análisis de los fragmentos esqueléticos de organismos planctónicos fosilizados.
La datación absoluta de determinadas rocas en geocronología, se basa en los análisis radiométricos de los minerales que las componen. Los métodos de datación absoluta se basan en el perfecto conocimiento del fenómeno radiactivo, mediante el cual un elemento radiogénico (o elemento padre) disminuye su concentración uniformemente a lo largo del tiempo, generando como resultado un nuevo elemento radiactivo (o elemento hijo). Cada uno de estos métodos analiza las proporciones existentes entre dos elementos radiactivos (el elemento padre y el elemento hijo), como por ejemplo las proporciones existentes entre el uranio-238 y el plomo-206; entre el uranio-235 y el plomo-207; o la existente entre el potasio-40 y el argón-40. Cada uno de estos casos tiene una velocidad de desintegración característica, en el primer caso la vida media del U238 es de 4.510 m.a., la del U235 de 713 m.a. y el caso del K40 1.300 m.a.
La peculiaridad por la cual cada elemento radiogénico presenta una vida media de desintegración diferente, caracteriza a cada elemento para un determinado uso. Los métodos basados en isótopos de uranio son los más precisos, mientras que el método de potasio-argón es el más común.

No hay comentarios:

Publicar un comentario